16 research outputs found

    Demodulation Performance Assessment of New GNSS Signals in Urban Environments

    Get PDF
    International audienceSatellite navigation signals demodulation performance ishistorically tested and compared in the Additive WhiteGaussian Noise propagation channel model which wellsimulates the signal reception in open areas. Nowadays,the majority of new applications targets dynamic users inurban environments; therefore the GNSS signalsdemodulation performance has become mandatory to beprovided in urban environments. The GPS L1C signaldemodulation performance in urban environments is thusprovided in this paper. To do that, a new methodologyadapted to provide and assess GNSS signalsdemodulation performance in urban channels has beendeveloped. It counteracts the classic method limitationswhich are the fluctuating received C/N0 in urbanenvironments and the fact that each received message istaken into account in the error rate computation whereasin GNSS it is not necessary. The new methodology thusproposes to provide the demodulation performance for‘favorable’ reception conditions together with statisticalinformation about the occurrence of these favorablereception conditions. To be able to apply this newmethodology and to provide the GPS L1C signaldemodulation performance in urban environments, asimulator SiGMeP (Simulator for GNSS MessagePerformance) has been developed. Two urbanpropagation channel models can be tested: thenarrowband Perez-Fontan/Prieto model and the widebandDLR model. Moreover, the impact of the received signalphase estimation residual errors has been taken intoaccount (ideal estimation is compared with PLL tracking)

    GNSS Signal Demodulation Performance in Urban Environments

    Get PDF
    International audienceSatellite navigation signals demodulation performance is historically tested and compared in the Additive White Gaussian Noise propagation channel model which well simulates open areas. Nowadays, the majority of new applications targets dynamic users in urban environments; therefore the implementation of a simulation tool able to provide realistically GNSS signal demodulation performance in obstructed propagation channels has become mandatory . This paper presents the simulator SiGMeP (Simulator for GNSS Message Performance) which is wanted to provide demodulation performance of any GNSS signals in urban environment , as faithfully of reality as possible . The demodulation performance of GPS L1C/A, GPS L2C, GPS L1C and Galileo E1 OS signals simulated with SiGMeP in the AWGN channel model configuration is firstly showed . Then, the demodulation performance of GPS L1C simulated with SiGMeP in urban environments is presented using the Prieto channel model with two signal carrier phase estimation configurations: perfect signal carrier phase estimation and PLL trackin

    Optimizing GNSS Navigation Data Message Decoding in Urban Environment

    Get PDF
    Nowadays, the majority of new GNSS applications targets dynamic users in urban environments; therefore the decoder input in GNSS receivers needs to be adapted to the urban propagation channel to avoid mismatched decoding when using soft input channel decoding. The aim of this paper consists thus in showing that the GNSS signals demodulation performance is significantly improved integrating an advanced soft detection function as decoder input in urban areas. This advanced detection function takes into account some a priori information on the available Channel State Information (CSI). If no CSI is available, one has to blindly adapt the detection function in order to operate close to the perfect CSI case. This will lead to avoid mismatched decoding due to, for example, the consideration by default of the Additive White Gaussian Noise (AWGN) channel for the derivation of soft inputs to be fed to soft input decoders. As a consequence the decoding performance will be improved in urban areas. The expressions of the soft decoder input function adapted for an urban environment is highly dependent on the available CSI at the receiver end. Based on different model of urban propagation channels, several CSI contexts will be considered namely perfect CSI, partial statistical CSI and no CSI. Simulation results will be given related to the GPS L1C demodulation performance with these different advanced detection function expressions in an urban environment. The results presented in this paper are valid for any kind of soft input decoders, such as Viterbi decoding for trellis based codes, the MAP/BCJR decoding for turbo-codes and the Belief Propagation decoding for LDPC codes

    New GNSS Signals Demodulation Performance in Urban Environments

    Get PDF
    Satellite navigation signals demodulation performance is historically tested and compared in the Additive White Gaussian Noise propagation channel model which well simulates the signal reception in open areas. Nowadays, the majority of new applications targets dynamic users in urban environments; therefore the implementation of a simulation tool able to provide realistic GNSS signal demodulation performance in obstructed propagation channels has become mandatory. This paper presents the simulator SiGMeP (Simulator for GNSS Message Performance), which is wanted to provide demodulation performance of any GNSS signals in urban environment, as faithfully of reality as possible. The demodulation performance of GPS L1C simulated with SiGMeP in the AWGN propagation channel model, in the Prieto propagation channel model (narrowband Land Mobile Satellite model in urban configuration) and in the DLR channel model (wideband Land Mobile Satellite model in urban configuration) are computed and compared one to the other. The demodulation performance for both LMS channel models is calculated using a new methodology better adapted to urban environments, and the impact of the received signal phase estimation residual errors has been taken into account (ideal estimation is compared with PLL tracking). Finally, a refined figure of merit used to represent GNSS signals demodulation performance in urban environment is proposed

    Modeling of miRNA and Drug Action in the EGFR Signaling Pathway

    Get PDF
    MicroRNAs have gained significant interest due to their widespread occurrence and diverse functions as regulatory molecules, which are essential for cell division, growth, development and apoptosis in eukaryotes. The epidermal growth factor receptor (EGFR) signaling pathway is one of the best investigated cellular signaling pathways regulating important cellular processes and its deregulation is associated with severe diseases, such as cancer. In this study, we introduce a systems biological model of the EGFR signaling pathway integrating validated miRNA-target information according to diverse studies, in order to demonstrate essential roles of miRNA within this pathway. The model consists of 1241 reactions and contains 241 miRNAs. We analyze the impact of 100 specific miRNA inhibitors (anit-miRNAs) on this pathway and propose that the embedded miRNA-network can help to identify new drug targets of the EGFR signaling pathway and thereby support the development of new therapeutic strategies against cancer

    Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X

    Get PDF

    Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X

    Get PDF
    We present recent highlights from the most recent operation phases of Wendelstein 7-X, the most advanced stellarator in the world. Stable detachment with good particle exhaust, low impurity content, and energy confinement times exceeding 100 ms, have been maintained for tens of seconds. Pellet fueling allows for plasma phases with reduced ion-temperature-gradient turbulence, and during such phases, the overall confinement is so good (energy confinement times often exceeding 200 ms) that the attained density and temperature profiles would not have been possible in less optimized devices, since they would have had neoclassical transport losses exceeding the heating applied in W7-X. This provides proof that the reduction of neoclassical transport through magnetic field optimization is successful. W7-X plasmas generally show good impurity screening and high plasma purity, but there is evidence of longer impurity confinement times during turbulence-suppressed phases.EC/H2020/633053/EU/Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium/ EUROfusio

    Analysis of different CSK configurations in an urban environment when using non-coherent demodulation

    No full text
    International audienceThis paper focuses on the demodulation performance analysis of different CSK configurations coupled with different demodulation/decoding methods in urban environments. The tested CSK configurations are defined by the number of bits mapped by a CSK symbol, the number of PRN codes constituting a symbol, and the codeword source mapping. The tested demodulation techniques are the traditional non-coherent demodulation technique and a new proposed technique called ‘non-coherent PRN code’ which reduces the demodulation exposition to the carrier phase fast variations. The tested scenarios depend on the mobile speed and the Line-of-Sight received signal conditions. From all these parameters, a better overall view of the behavior of a CSK signal transmitted in urban environments is obtained and more tools are provided for the design of a GNSS CSK modulated signa

    The SWIM instrument, a wave scatterometer on CFOSAT mission

    No full text
    International audienceSWIM is part of the CFOSAT satellite mission payload. It is designed for the measurement of directional ocean wave spectra. It is a Ku-band real-aperture radar with 6 rotating fan-beams pointing near nadir. The main characteristics of the instrument, data, products are presented in this paper, as well as performances estimated from simulations

    Wave spectrum retrieval from SWIM data: speckle spectrum estimation Session: " Wave retrieval and applications "

    No full text
    International audienceThe Chinese and French Space Agencies propose to jointly carry out an innovative mission, CFOSAT (China France Oceanography Satellite project) devoted to the monitoring of the ocean surface and its related science and applications. CFOSAT will embark both a wind and a wave scatterometers, enabling a simultaneous measure of the wind and the wave vectors with a global coverage for the first time. The launch is planned for mid-2018
    corecore